If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-56y=0
a = 15; b = -56; c = 0;
Δ = b2-4ac
Δ = -562-4·15·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-56}{2*15}=\frac{0}{30} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+56}{2*15}=\frac{112}{30} =3+11/15 $
| 5(s+3)-4=-5 | | 130+20=15+15x | | 5r+30/20=2r-24/2 | | 15y^2=56y | | 150.50=25m−0.25 | | 4(x+8)=4(x-5) | | 141+100=x+144 | | 7(d-5)=7 | | 2w-25w-18=-83 | | 32x+1-81=0 | | X+(x+2)^2=54 | | r/4=r+1/6 | | 11h-4h=14 | | 3200=0+(6.4)(222)+(1/2)a(222)^2 | | 12=-7x+10 | | -4(5s-6)+21(s-8)=-146-2 | | -(s+5)+2s-3=-5 | | -6s+-14s+-1=19 | | 8(p-0.25=4(2p-0.5) | | 6(n+2)-4=n-4+2n | | |2x+2|+6=10 | | 16y=18y-8 | | x=3(17) | | 39x39=x | | -18=-(6k-19) | | 52+8x+1=3x-2 | | 9j-6+6=3(5j-2) | | 3(1+n)-5=3n-2 | | 9−7h=-8h | | x2+5=54 | | 7z−8=8z | | X2+2x-143=0 |